首页> 外文OA文献 >Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
【2h】

Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region

机译:陆地生态系统模型在模拟北部多年冻土地区生产力及其对气候变化的脆弱性方面的表现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
机译:对未来气候-碳(C)循环反馈的现实预测需要更好地理解,并需要在当前的地球系统模型中更好地表示永冻土区域中的C循环。在这里,我们评估了10个陆地生态系统模型的估计净初级生产力(NPP)以及对北半球多年冻土地区历史气候变化的响应。与中分辨率成像光谱仪(MODIS; 246±6gCm-2yr-1)的卫星估算值相比,大多数模型在2000-2009年期间的多年冻土区域产生了更高的NPP(309±12gCm-2yr-1)。通过将模拟的总初级生产率(GPP)与基于通量塔的数据库进行比较,我们发现,尽管模型之间的平均GPP在1982-2009年间仅被高估了10%,但模型之间存在两倍的差异(380至800gCm- 2yr-1),这主要是由于模拟的最大每月GPP(GPPmax)的差异所致。与区域和站点水平的观察相比,大多数模型都高估了碳的使用效率(CUE)。进一步的分析表明,GPP和CUE的模型变异性分别与特定叶面积的变异性和Rubisco酶在25°C(Vcmax_25)下的最大羧化速率非线性相关。这些模型的NPP,GPP和CUE对气候和大气CO2浓度历史变化的敏感性也各不相同。这些结果表明,通过更好地表示控制CUE和GPPmax的过程及其对气候变化的敏感性,可以改善多年冻土区域C循环的模型预测能力。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号